Электростатика, электрическое поле, потенциал - лекции

Основная задача электростатики

Задача заключается в определении функции (x,y,z), которая удовлетворяет уравнению (4.3), а также определенным граничным условиям. Граничные условия это значения (x,y,z) во всех точках поверхности, охватывающей область, в которой определена функция При этом на поверхности, удаленной в бесконечность, потенциал принимается равным нулю.На проводящих поверхностях могут быть заданы потенциалы каждого проводника или величина полного заряда на каждом проводнике. Объемные заряды предполагаются отсутствующими, ибо заряды проводников сосредоточены на их поверхности.

Основная задача электростатики может быть сформулирована следующим образом.

Дано: расположение и форма всех проводников, а также либо потенциал каждого проводника, либо общий заряд каждого проводника.

Найти: поле этих проводников и распределение зарядов по их поверхности.

В теории доказывается, что существует только одна функция (x,y,z), удовлетворяющая уравнению Лапласа и принимающая на границах заданные значения, т.е., что решение задачи единственно.

Однозначность решения позволяет заключить, что как угодно найденная любая функция (x,y,z), являющаяся решением уравнения (4.3) и удовлетворяющая граничным условиям есть единственное и потому истинное решение задачи.

Пример 2. Два заряда 9Q и -Q закреплены на расстоянии l=50 см друг от друга. Третий заряд Q1 может перемещаться только вдоль прямой, проходящей через заряды. Определить положение заряда Q1, при котором он будет находиться в равновесии. При каком знаке заряда равновесие будет устойчивым Решение. Заряд Q1 будет находиться в равновесии в том случае, если векторная сумма сил, действующих на него, будет равна нулю. Это значит, что на заряд Q1 должны действовать две силы, равные по модулю и противоположные по направлению.

Физика, математика лекции учебники курсовые студенту и школьнику