Теорема Остроградского-Гаусса
Поток вектора a через произвольную замкнутую поверхность S равен интегралу дивергенции этого вектора по объему V, ограниченному этой поверхностью:
(2.15)
Разобъем весь объем, заключенный внутри поверхности S на элементарные кубики типа изображенных на рис. 2.7. Грани всех кубиков можно разделить на внешние, совпадающие с поверхностью S и внутренние, граничащие только со смежными кубиками. Сделаем кубики настолько маленькими, чтобы внешние грани точно воспроизводили форму поверхности. Поток вектора a через поверхность каждого элементарного кубика равен
,
а суммарный поток через все кубики, заполняющие объем V, есть
(2.16)
Рассмотрим входящую в последнее выражение сумму потоков dФ через каждый из элементарных кубиков. Очевидно, что в эту сумму поток вектора a через каждую из внутренних граней войдет дважды.
Рис. 2.8
Рассмотрим два смежных кубика , поверхности которых обозначены как S1 и S2 (рис. 2.8), причем смежная грань входит как в S1 так и в S2. Очевидно, что при подсчете потока через S1 угол между внешней нормалью к этой грани и вектором а острый и вклад от этой грани в поток будет положительным. А при подсчете потока через S2 вклад от этой грани будет, очевидно, отрицательным.
Тогда полный поток через поверхность S=S1+S2 будет равен сумме потоков через только внешние грани, поскольку сумма потоков через внутреннюю грань даст ноль. По аналогии можно заключить, что все относящиеся к внутренним граням члены суммы в левой части выражения (2.16), сократятся. Тогда, переходя в силу элементарности размеров кубиков от суммирования к интегрированию, получим выражение (2.15), где интегрирование производится по поверхности, ограничивающей объем.
Заменим в соответствии с теоремой Остроградского-Гаусса поверхностный интеграл в (2.12) объемным
и представим суммарный заряд как интеграл от объемной плотности по объему
Тогда получим следующее выражение
Полученное соотношение должно выполняться для любого произвольно выбранного объема V. Это возможно только в том случае, если значения подинтегральных функций в каждой точке объема одинаковы. Тогда можно записать
(2.17)
Последнее выражение представляет собой теорему Гаусса в дифференциальной форме.
Пример 2. Два заряда 9Q и -Q закреплены на расстоянии l=50 см друг от друга. Третий заряд Q1 может перемещаться только вдоль прямой, проходящей через заряды. Определить положение заряда Q1, при котором он будет находиться в равновесии. При каком знаке заряда равновесие будет устойчивым Решение. Заряд Q1 будет находиться в равновесии в том случае, если векторная сумма сил, действующих на него, будет равна нулю. Это значит, что на заряд Q1 должны действовать две силы, равные по модулю и противоположные по направлению.
Физика, математика лекции учебники курсовые студенту и школьнику |