Волновые свойства микрочастиц Примеры решения задач

Геометрическая оптика Фотоэлектрический эффект Ядерные реакции Волновые свойства Квантовая механика Электромагнитное поле Задачник по ядерной физике Квантовая физика Электростатика Математика MATLAB Компьютерная математика Maple Лекции по математике учебник Outlook На главную

Геометрическая оптика
Фотоэлектрический эффект
Ядерные реакции
Волновые свойства
Квантовая механика
Электростатика
Электромагнитное поле
Конструкционные материалы
Справочник по физике
Учебник по документообороту
Прикладная математика
Релятивистская механика
Задачник по ядерной физике
Высшая математика
Функции и их графики
Пределы функции
Непрерывность функций
и точки разрыва
Производные и дифференциалы
Свойства дифференцируемых
функций
Исследование функций
и построение графиков
Кривизна плоской кривой
Векторная алгебра
Прямые линии и плоскости
Кривые и поверхности
второго порядка
Учебник Outlook
Maple
  • Первое знакомство с Maple
  • Информационная поддержка
  • Работа с файлами и
    документами
  • Управление интерфейсом
    пользователя
  • Типы данных системы
  • Встроенные операторы и
    функции
  • Типовые средства
    программирования
  • Математический анализ
  • Анализ функций и полиномов
  • Символьные операции
  • Типовые средства
    построения графиков
  • Расширенные средства
    графики
  • Решение дифференциальных
    уравнений
  • Математические пакеты
  • Пакеты линейной алгебры
  • Обзор пакетов
  • Решение научных задач
  • MATLAB
  • Знакомство с MATLAB
  • Установка системы
  • Визуализация вычислений
  • Работа со справкой
  • Интерфейс MATLAB
  • Обычная графика MATLAB
  • Специальная графика
  • Операторы и функции
  • Математические функции
  • Операции с векторами
    и матрицами
  • Матричные операции
  • Функции разреженных матриц
  • Многомерные массивы
  • Массивы структур
  • Массивы ячеек
  • Численные методы
  • Обработка данных
  • Работа с символьными данными
  • Работа с файлами
  • Основы программирования
  • Отладка программ
  • Поддержка звуковой системы
  • Пакеты расширения MATLAB
  • Основные формулы

    ПРОСТЕЙШИЕ СЛУЧАИ ДВИЖЕНИЯ МИКРОЧАСТИЦ

    СТРОЕНИЕ АТОМА

    СПЕКТРЫ МОЛЕКУЛ

    ·         Приведенная масса двухатомной молекулы

     m = т1т2 + т2),

    где m1 и m2 — массы атомов, входящих в состав молекулы.

    ·         Собственная круговая частота осциллятора

     w = ,

     где b — коэффициент квазиупругой силы.

    ·         Нулевая собственная волновая функция одномерного кван­тового гармонического осциллятора

     

     где параметр

    ·         Энергия колебания гармонического осциллятора Электростатика Электричество и электромагнетизм

     En, = ħw ( n + 1,2),

    где п — колебательное квантовое число (n = 0, 1, 2, 3, . . .).

    ВОЛНОВЫЕ СВОЙСТВА МИКРОЧАСТИЦ

    Пример. Электрон, начальной скоростью которого можно пренебречь, прошел ускоряющую разность потенциалов U. Найти длину волны де Бройля l для двух случаев: 1) U1= = 51 кВ; 2) U2 = 510 кВ.

    Пример . На узкую щель шириной а = 1 мкм направлен парал­лельный пучок электронов, имеющих скорость = 3,65 Мм/с. Учи­тывая волновые свойства электронов, определить расстояние х между двумя максимумами интенсивности первого порядка в дифракционной картине, полученной на экране, отстоящем на L = 10 см от щели. Матис Нитхардт- Изенгеймский алтарь Матис Нитхардт, известный с XVII в. под именем Грюневальд, родился в Вюрцбурге, в земле Гессен. Современные специалисты доказали, что Грюневальд - прозвище, данное мастеру по недоразумению: знатоки живописи спутали художника с неким Грюном, копировавшим его произведения.

    Пример. Собственная угловая частота  w колебаний молекулы НС1 равна 5,63×1014 с-1, коэффициент ангармоничности g = 0,0201. Определить: 1) энергию DE2, 1(в электрон-вольтах) перехода моле­кулы с первого на второй колебательный энергетический уровень

    Эмоциональный потенциал архитектуры

    В сравнительном анализе, проведенном выше, мы опирались на утверждение, что эмоциональное воздействие архитектуры определяется высшей эстетической потребностью познания, в свою очередь мотивированной врожденными константами (ориентировочной реакцией, реакцией протеста против ограничения свободы движения и оборонительной реакцией.

    Пример. Для молекулы HF определить: 1) момент инерции J, если межъядерное расстояние d = 91,7 им; 2) вращательную посто­янную В; 3) энергию, необходимую для возбуждения молекулы на первый вращательный уровень.

    Пример. Терм 2P3/2 расшифровывается следующим образом:мультиплетность 2S + 1 = 2; следовательно, S = 1/2, символу Р соответствует L = 1, a J=3/2.

    Пример. Электрон с энергией E = 4,9 эВ движется в положи­тельном направлении оси х (рис. 46.3). Высота U потенциального барьера равна 5 эв. при какой ши­рине d барьера вероятность W про­хождения электрона через него бу­дет равна 0,2?

    Пример. Моноэнергетический поток электронов (E=100эВ) падает на низкий * прямоугольный потенциальный баpьеp бeсконечной ширины (рис. 46.1). Определить высо­ту потенциального барь­ера U, если известно, что 4 % падающих на барьер электронов отра­жается .

    Пример. Электрон находится в бесконечно глубоком одно­мерном прямоугольном потенциальном ящике шириной /. Вычис­лить вероятность того, что электрон, находящийся в возбужденном состоянии (п=2), будет обнаружен в средней трети ящика.

    Пример Используя соотношение неопределенностей энергии и времени, определить естественную ширину ∆λ спектральной линии излучения атома при переходе его из воз­бужденного состояния в основное. Сред­нее время τ жизни атома в возбужденном состоянии принять равным 10-8 с, а дли­ну волны λ излучения—равной 600 нм.

    Пример. Кинетическая энергия Т электрона в атоме водорода составляет величину порядка 10 эВ. Используя соотношение неопре­деленностей, оценить минимальные линейные размеры атома.

    Пример На грань кристалла никеля падает параллельный пучок электронов. Кристалл поворачивают так, что угол скольже­ния θ изменяется. Когда этот угол делается равным 64°, наблюдается максимальное отражение электронов, соответствующее дифракцион­ному максимуму первого порядка. Принимая расстояние d между атомными плоскостями кристалла равным 200 пм, определить длину волны де Бройля λ электронов и их скорость ν.

     

     

     

     

    Физика, математика лекции учебники курсовые студенту и школьнику