Примеры решения научно-технических задач

Математика MATLAB

Пример функции с встроенной подфункций

Подфункции определены и действуют локально, т. е. только в пределах т-файла, определяющего основную функцию. Команда help пате выводит комментарий, относящийся только к основной функции, тогда как команда type name выводит весь листинг m-файла. Так что заданные в некотором m-файле подфункции нельзя использовать ни в командном режиме работы, ни в других т-файлах. При обращении к функции интерпретатор системы MATLAB прежде всего просматривает m-файл на предмет выявления подфункций. Если они обнаружены, то задаются как локальные функции. Благодаря локальному действию подфункций их имена могут совпадать с именами основных функций системы. Если в функции и подфункциях должны использоваться общие переменные, их надо объявить глобальными как в функции, так и в ее подфункциях.

 

 

Разделение изотопов

Рассмотрим еще одну классическую задачу ядерной физики — разделение изотопов (атомов с одинаковым зарядом ядра, но разной массой). Для этого используют различные способы. В частности, это может быть масс-спектроскопический метод. Из точки А вылетают однозарядные ионы (q = е = 1.6*10-19 Кл) разной массы (от 20 до 23 а.е.м.) и под разными углами в пределах от 80 до 100° к оси х в плоскости ху (рис. 17.9). Вдоль оси z приложено магнитное поле В=10-2 Тл. Рассчитаем траектории полета частиц. Будем надеяться, что это подскажет способ разделения изотопов.

Приступим к решению данной задачи. Сила Лоренца, действующая на движущуюся частицу, F = q*(E+[v, В]). Проекции векторного произведения [v, В] на оси х, у, z заданы выражениями:

[v.B]x-vy*Bz-vz*By [v,B]y-vz*Bx-vx*Bz [v,B]z=vx*By-vy*Bz

Рис. 17.9. Иллюстрация к методу разделения изотопов

В соответствии с этим дифференциальные уравнения, описывающие траекторию полета частицы по осям х, у, z имеют вид:

Зададим исходные числовые данные для расчета:

> q:=1.6e-19:V:=le4:

> Vx:=V*cos(a1pha):Vy:=V*sin(a1pha):Ex:=0:Ey:=0:Ez:=0:Bx:=0: By:=0:Bz:=le-2:

Выполним решение составленной выше системы дифференциальных уравнений:

Построим графики решения:

Эти графики показаны на рис. 17.10.

Рис. 17.10. Траектории движения частиц

Полученные графики (рис. 17.10) наглядно показывают на одну из возможностей разделения изотопов. Как говорится, осталось подставить «стаканчик» в нужное место для ловли нужных изотопов. Разумеется, это только изложение идеи одного из методов разделения изотопов. Увы, на практике приходится использовать сложнейшие и дорогие физические установки для решения этой актуальной задачи.

Физика, математика лекции учебники курсовые студенту и школьнику