Лавинно-пролетный диод
Концептуальная диаграмма.
Лавинное умножение носителей.
Пролетный режим работы ЛПД.
Параметры и характеристики, особенности устройства и применения ЛПД. Вращающееся магнитное поле системы двух катушек Пусть даны две одинаковые катушки, оси которых расположены под углом 90° по отношению друг к другу (рис.5.2).
Контрольные вопросы.
7.1. Концептуальная диаграмма
7.2. Лавинное умножение носителей
Лавинно-пролетный диод (ЛПД)— это полупроводниковый СВЧ-диод, в котором для получения носителей заряда используется лавинное умножение (ударная ионизация) в области электрического перехода и взаимодействие этих носителей с переменным полем в переходе в течение времени пролета. Лавинно-пролетные диоды относятся к классу двух-полюсников, обладающих отрицательным сопротивлением на зажимах, что позволяет испо-льзовать ЛПД для создания генераторов и усилителей. Отрицательное сопротивление ЛПД проявляется только на достаточно высоких частотах и не проявляется в статическом режи-ме. Причиной этого является наличие фазового сдвига между током и напряжением на ЛПД.
Рис. 7.1. Схема ЛПД и распределение напряженности электрического поля:
D — ширина запирающего слоя; d— ширина слоя умножения
В иностранной литературе такие диоды часто называют диодами Рида по фамилии ученого, предложившего в 1958 г. структуру типа р—п—i—р и принципы работы устройства, однако эта структура была реализована только в 1965 г. Первый ЛПД создан в СССР А. С. Тагером с сотрудниками на основе обнаруженного в 1959 г. эффекта генерации СВЧ-колебаний при лавинном пробое германиевых диодов.
На рис. 7.1 показана схема плавного p-n-перехода ЛПД и распределение электрического поля в переходе. На диод подается обратное напряжение такой величины, что рабочая точка смещается в область лавинного умножения (рис.7.2). В p-n-переходе начинается процесс ударной ионизации атомов кристаллической решетки подвижными носителями заряда и образование новых пар электронов и дырок. С этим явлением связан резкий рост обратного тока перехода, называемый лавинным пробоем. Для количественной характеристики процесса ударной ионизации вводят коэффициенты ионизации αn и αp для электронов и дырок — число электронно-дырочных пар, создаваемых на единице пути (1 см) электроном и дыркой соответственно.
Лавинный пробой возникает, в результате ударной ионизации нейтральных атомов в р-n-переходе быстрыми электронами или дырками. В результате генерируются новые пары носителей заряда, которые, двигаясь в электрическом поле перехода, вновь при столкновении с атомами образуют новые пары носителей и т. д., т. е. носители в переходе лавинообразно размножаются. Параметром этого процесса является коэффициент умножения М, определяемый как отношение числа носителей, выходящих из p-n-перехода, к числу носителей того же типа, входящих в переход. Коэффициент М можно рассчитать по следующей эмпирической формуле:
(7.1)
где Uпр - напряжение пробоя.
Показатель степени для кремния и германия n-типа b = 3; для германия p-типа b=5,5. Величина пробивного напряжения не зависит от типа носителей и растет с увеличением удельного сопротивления полупроводника; у кремния это напряжение выше, чем у германия при тех же значениях удельного сопротивления.
Принято считать, что лавинный пробой наступает при таком обратном напряжении на переходе, когда коэффициент лавинного умножения обращается в бесконечность. Если начало лавинного умножения вызвано дырками (IP0>>In0), то условие лавинного пробоя будет выглядеть следующим образом:
(7.2)
Условие (7.2) имеет простой физический смысл; для возникновения лавинного пробоя необходимо, чтобы каждый электрон и каждая дырка, вошедшие в переход и возникающие в переходе, создавали в среднем до одной электронно-дырочной паре. Если αпαр, то носители, имеющие больший коэффициент ионизации, должны создавать при прохождении перехода в среднем более одной пары, чтобы скомпенсировать уменьшение коэффициента ионизации носителей другого типа.
Напряженность электрического поля максимальна на границе между р- и n-областями. Поэтому ударная ионизация происходит лишь в узком слое умножения δ, прилежащем к плоскости границы. Вновь созданные электроны и дырки под действием сильного поля дрейфуют через p- и n- пролетные участки запирающего слоя, расположенные по обе стороны от слоя умножения. Дырки дрейфуют через p-слой, а электроны через n-слой. При возрастании электрического поля скорость носителей заряда растет линейно. Но уже при напряженности поля, вызывающей лавинное умножение носителей (Е >> 105 В/м), скорость носителей заряда становится практически постоянной.
Пролетное время носителей заряда пропорционально ширине области пролета D и это объясняет запаздывание лавинного тока от напряжения в ЛПД. Сдвиг фазы между изменением напряженности поля и изменением тока при определенной частоте составит π/2. Дрейфуя через пролетные участки, электроны и дырки частично компенсируют объемный заряд ионов примеси и снижают напряженность поля в слое умножения.
Пролетный режим работы ЛПД (IМРАТТ -Avalanche Transit Time — ударная ионизация и пролетное время) работы диода основан на использовании лавинного пробоя и эффекта времени пролета носителей в обедненной области различных полупроводниковых структур. Распределение поля в этой области, определяющее физические процессы в диоде, зависит от типа структуры и закона распределения концентрации примесей в областях структуры. Ниже будет рассмотрена структура типа n+—р—i—p+ (диод Рида) (рис. 7.2, a), в которой области лавинного умножения и дрейфа носителей пространственно разделены.
Параметры их характеристики, особенности устройства и применения ЛПД Основными параметрами ЛПД являются: а) выходная мощность Pвых—мощность генератора на ЛПД в заданном диапазоне частот и напряжения питания. Это важнейший параметр ЛПД. Максимальная полезная мощность генератора при заданном сопротивлении нагрузки зависит от добротности диода и от амплитуды переменного тока и напряжения. Максимальное значение выходной мощности различных типов ЛПД колеблется в пределах 10—100 мВт на частоте 7-50 ГГц;
Для ycилeния и гeнepaции кoлeбaний CBЧ-диaпaзoнa мoжeт быть иcпoльзoвaнa aнoмaльнaя зaвиcимocть cкopocти элeктpoнoв oт нaпряжeннocти элeктpичecкoгo пoля в нeкoтopыx пoлyпpoвoдникoвыx coeдинeнияx, пpeжде вceгo в apcенидe гaллия. Пpи этoм ocнoвнyю poль игpaют пpoцeccы, пpoиcxoдящиe в oбъeмe пoлyпpoвoдникa, a нe в p-n-пepexoдe. В 1961 -1962гг. Ридли, Уоткинс и Хилсум теоретически показали, что однородные образцы из некоторых полупроводниковых материалов могут иметь отрицательную дифференциальную проводимость. В 1963 г. Дж.Ганн экспериментально обнаружил токовую неустойчивость (высокочастотные периодические импульсы тока) в однородных образцах из GaAs и InP с электронной проводимостью (пoэтoмy тaкиe пpибopы нaзывaют диoдaми Гaннa). В oтeчecтвeннoй литepaтype иx нaзывaют тaкжe прибopaми c oбъeмнoй нeycmoйчивocmью или c мeждoлинным пepeнocoм элeкmpoнoв, пocкoлькy aктивныe cвoйcтвa диoдoв oбycлoвлeны пepexoдoм элeктpoнoв из «цeнтpaльнoй» энepгетичecкoй дoлины в «бoкoвyю», гдe oни xapaктepизyютcя бoльшoй эффeктивнoй мaccoй и мaлoй пoдвижнocтью. В инocтpaннoй литepaтype пocлeднeмy нaзвaнию cooтвeтcтвyeт тepмин TED (Traпsferred Electroп Device).
Для исследования широкого круга устройств можно применять упрощенные методы, так называемые методы теории цепей, основанные на замене реального устройства некоторой упрощенной моделью, процессы в которой описываются скалярными величинами - токами и напряжениями. Отдельные составные части (элементы) устройства при этом заменяют моделями, приближенно отражающими основные (в рамках решаемой задачи) свойства соответствующих элементов.
Свободные носители зарядов в полупроводниках |